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Correlated patterns in nonmonotonic graded-response perceptrons
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The optimal capacity of graded-response perceptrons storing biased and spatially correlated patterns with
nonmonotonic input-output relations is studied. It is shown that only the structure of the output patterns is
important for the overall performance of the perceptrons.

PACS numbd(s): 87.10+¢e, 02.50--r, 64.60.Cn

Graded-response perceptrons have been studied integse the replica  technique to calculate v
sively in the past yearg[1] and references therginlt is =limy_..N"%{InV)) with V the fractional volume inJ
found that for nonmonotonic input-output relations interest-space with spherical normalization af(d)) the average over
ing retrieval properties are obtained such as an improvemene statistics of inputs and outputs.
of the optimal capacitysee, e.g.[2]). The order parameters occuring in this calculation for cor-

The studies mentioned above concern patterns that af@lated patterns witm=0 are[4,5]
chosen to be independent identically distributed random vari-
ables with respect to the sites and the patterns. However, in 1
practical applications one has to consider sets of data with __ RIS /
internal structure. While the effects of bias and correlations D =N %3 Cuirrdidp MM 2
on the optimal capacity have been studied before for mono-
tonic input-output relationg[3—6] and references thergin 1
they have not yet been reported on for nonmonotonic ones. __ R L '

This is the purpose of this Brief Report. AN JEJ/ Ciirdidj MA=L 0 ©

The graded-response perceptron maps a collection of in-
put patterng £#;1<i<N}, 1l<sp<p=aN, with « the ca-

. . . with n the number of replicas. Since the set of general fixed-
pacity, onto a corresponding set of outpytsvia

point equations leading to the optimal capacity (obtained
when V—0) in the replica-symmetri¢RS) approximation
{H=g(h™), hﬂzi E J,—ff‘- (1) hgs been_discussgd already{_m5] (for a simpl@T perceptron
IN 4 with the sign function as an input-output relatiome do not
write out explicitly the analogous formula for the graded-
Hereg is the input-output relation of the perceptron. In Eq.response perceptron with correlated input and binary output
(1) h* is the local field generated by the inputs. Theare  but nonmonotonic input-output relations. For technical rea-
the couplings of the perceptron architecture. We focus ousons the latter are taken to be odd in the field. We just men-

attention on general input patterns specified by tion that the essential difference is a splitting of the integra-
, tions in regions of the fornf(u;_1+1;)/2J];] and[u;,(y;
(&=m, (&'¢)=6,.Cij. (2} +1,,1)/2], corresponding to the collection of intervalé)

[compare Eq(8) in [2]]. No closed form fore, is possible

The matrixC formed by the element€;; is taken to be  znq the solution of these fixed-point equations is rather te-
symmetric and positive. We specifically consider correla-yiq,s.

tions withm=0 and generaC and correlations withm+0 For biased patterngm+0 andC;;= 6, (v+m?)] the or-
and Cj;= g;; (v +m?). The latter are called biased patterns der parameters read ' '
andv is the variance of the input distribution.

In order to compute the available Gardner voluiBkin J

. . " . . 1 ,
space we consider the following condition on the local fields: =g 2,: ij\]jx AN, @)
h*el*={x9(x)=¢"}, &)
where in general 1
M”:J_NE OAN=1,...n (8)
® ®
4= U] 1= Ui (14 ul] 4 :

form a collection of intervals, not necessarily simply con-  Since in this case a closed form fag, is possible and its

nected, withl{, uf* the lower and upper bounds of thth  structure is interesting for analyzing the effects of the bias

subinterval and# the number of subintervals defined by the we write it down explicitly in a first-step replica-symmetry-
pattern{#. We remark that for monotonic input-output rela- breaking approximatiofRSBY). Applying the Parisi scheme
tions,r#=1. Following the standard Gardner analyjd$we  [2,9] we find
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Pdo

—In[1+P(1-qo)]— T+ P(1—qg)

RSB — min max

Cc
Pdo M zuazo |n«p(|#,qo,P,ZO)>

a

I

€)
with, dropping the indexx in the sequel,
v (1#,q90,P,zg)
—E c( [B(uJ D+ B()1yd, ))
1

+L _E[B(uj)+6(|j+1)]-_B(uj)ry(uj)

+ L(=B(uj), = B(15),0), (10
whereupy=—=, |, =+, and the othet; andu; depend

explicitly on the input-output relatiog [recall Egs.(3) and
(4)]. Furthermore,

L(a,b,c)= fszl ex;{ - %Pcz), (11
A(X) +2v/q0 X—mM

BX)= —————, AX)=——=, 12

y(X)=A(X) + 2o\qo+ 2, V1~ qo, (13)

with Dz=dz(27) ? exp(-Z/2) the Gaussian measure.
For zero bias we find back the results given in Ej.

Two input-output relations are studied for comparison
The piecewise linear one
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FIG. 1. The optimal capacity. of ggw as a function ofygy
with m,=0.2 and, from right to leftm;=0.9,0.7,0.5 and the scaled
result[Egs.(17) and(18)] for these curves.

wherem can be different for input and output, thus defining
m; andm,. Without loss of generality we take the bias pa-
rameteram to be positive.

We start with some general properties of the perceptrons
defined by Eqs(14) and(15). Comparing the result®) with
those of[2,10], we see that in order to obtain the expressions
for biased patterns it is sufficient to substitute the local field
h by (h—miM)/\/;, and to perform an extra maximization
overM in the expressions for patterns without bias. This tells
us that the order parametet, which indicates the bias in the
couplings, as seen in its definitidB), shifts the local field
such that conditior(3) is optimally satisfied and hence the
capacity increases. Furthermore, it naturally introduces two
casesmM =0 andm;M #0. Whenevem; or m, are zero
m;M =0. Howeverm;M =0 does not necessarily imply that
m; or m, are zero, as we will see explicitly in the case of the
nonmonotonicggry. These points wheren;M =0 occur

rather exceptionally, though.

A closer inspection of the resul{8)—(13) shows that the

sgnx), |x|=1/y, graded-response perceptron satisfies the following analytic
gL(x)= (14)  scaling behavior:
nx  x|<ly
: : : ac(m;, y;mo) = ac(f(m;,y);my), 17
is a prototype of a general monotonic function, and the re-
versed wedgé7,8] f(my,y)=(1— mi2)71/2,y_ (18)

Irw(X) = sgM (X+ 1yrw) X(X— 1/yrw) ] (19 These results are valid for both monotonic and nonmono-

tonic input-output relationgsee Fig. 1 discussed above.

is an example of a nonmonotonic one. Heyg,yryw are
called gain parameters. In the sequel we ysgithout sub-
script when the results are valid for both types of input-
output relations.

Each of the above functions is an example of a class o
input-output relations that can be parametrized in the follow-
ing way. Consider a certain class and take two functigns

and g then (14)1#=(1/y)1*. Other examples satisfying
this relation include, e.g., th@nh function, the inverse lin-

Other input-output relations need a different parametrization
in order to give the simple factoy in Eq. (18). The new
insight is that the output statistics is the important quantity
?etermining the performance of the perceptron. In general,
ncreasing the bias in the output results in a nondecreasing
‘optimal capacity.

Concerning the RS stability assured by a negative sign of
the replicon eigenvaluag [9] we find that for monotonic
nondecreasing input-output relations and unbiased output

ear function, and the sawtooth function, each with the slopgatterns the following identity holds fan,=0:
as a relevant parameter.

Biased patternsFirst, we study biased input and output
patterns chosing as their probability distribution

17
Sgr[ A (ml YL 10)] Sgr{ Y ac( m;,yL 10) (19)

This relation tells us that varying the input bias does not

(16) change the breaking behavior. The latter can also be seen

1+m 1-m
p(x)zTﬁ(l—x)+ T5(1+x),
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_ FIG. 2. The optimal capacity. (full curves and the replicon FIG. 4. The optimal capacity. as a function ofy, for g, with
eigenvalue\ (dashed curvesfor g as a function ofy, with mi  correlated inputs. From top to bottoS=0,0.5,0.9.
=0.2 and, from bottom to topn,=0,0.5,0.9.

m,>0 we find that there exist multiple solutions of the rel-
from relation(19) for mj=0 (as given in10]) together with  evant fixed-point equations for small valuesygfy . This is
the scaling relatior{17). For nonmonotonig we know that  due to the nonmonotonicity of the input-output relation. In
replica-symmetry is unstable.1]. that case we take the solution giving the greatest optimal
For the graded-reponse perceptgpnand pattern distri- capacitya,. .
bution (16) we find the following additional results concern- A somewhat surprising feature of this perceptron is that a
ing the output bias. FOM =0 the solution is stable for all second maximum develops both in the RS and RSB1 solu-
values of the bias in input and output, for eagh. ForM  tion as a function ofygy for big values ofm, (Fig. 3.
#0, from a certain value ofn, onwards the RS solution Qualitatively the overall behavior of the input-output relation
becomes unstable for a growing intervahgfvalues. Thisis  remains the same within RSB1. This is so for all values of
shown in Fig. 2. For these perceptrons it is knd@i0] that  the model parameters we have considered but may be a prop-
the effect of breaking is small. Although it grows with in- erty of the binary output distributioftompard 2] for a uni-
creasing output bias, it is seen that fop<<0.9, the differ-  form outpu). The difference between RS and RSB1 grows
ence in capacity does not exceed $0We remark that the  with increasing bias.
maximum capacity is reached fgf — oo in agreement with Between the two maxima, there is a point whetedoes
[3]. not depend on the output,. This feature is present both in
For the nonmonotonic input-output relatigp,, the maxi-  the RS and the RSB1 approximation although for a slightly
mal « is obtained for a finite value ofry, as shown in different value ofyg,, in RSB1. The underlying reason for
Fig. 3, implying that there exists an optimal choice for thethis is that the solution o at these points is zero and that
width of the plateaus. This choice depends on the specifithe input-output relation is odd in the local field, such that
parameters of the pattern distribution. the output statistics does not influence the optimal capacity
Compared with the monotonic case the overall differencef the system. Since changing can be expressed as rescal-
between the RS and RSB1 solution is much bigger. The oping yg,, in the sense of Eq17), the capacity at these points
timal capacity for the nonmonotonic perceptron is alwaysis the same for every value ofy and m,. Changing the
greater than that for the monotonic one. We note that foinput distribution(16) by varying the place of the delta peaks
Yrw—0 and ygyw— the optimal capacity ofgrw @p- in the interval[0,1] shows a similar scaling behavior.
proaches that of the sign function. Technically, for every Correlated patternsNext, following[4], we study corre-
lations in the input patterns that are positive and fall off with

15 the distance between the sites
I Cij=exp(—|i—jl/L)=9"1, (20)
10
with L a typical length size. The paramet®is the correla-
Xe | tion strength inside one input pattern and varies between 0,
s L corresponding to independent sites and 1 meaning that all
B spins in a pattern are equal. The spatial structure introduced
[ above induces interesting correlations between the couplings
B [4].
0 0 '1 '2 3 For the sign function it has been shoy that the opti-
o mal capacitya, remains 2, regardless of the inner structure
RW

of the inputs. First, for the case gf we analyze the critical
FIG. 3. The RS(dashed curjeand RSB(full curve) optimal ~ capacity a; as a function ofy, for different correlation

capacity e, of gry as a function ofygy with m;=0.1 and, from  strengthsS The results are shown in Fig. 4. By increasing

bottom to top,m,=0,0.5,0.75,0.8. or decreasinds, «. increases. In the limity,—o, g, be-
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12 Looking at Fig. 5 we see that the maximal valueagfis

the same, independent of the correlation strength. This can
also be shown using the structure of the fixed-point equations
(9-(13). We find

8
O a(S, yrw) = ac(f(S, yrw)), (21
4 where the precise scaling functiércan be determined only
numerically due to the complex structure of the fixed-point
equations. However, we can show analytically that fagy,
A A = vy, defined such that, is maximal
0
0 1 2 3
- 1+SZ 1/2
f(S,ve)= T 2 Ye- (22)
FIG. 5. The optimal capacity, as a function ofygry for ggw 1-S

with correlated inputs. From right to le$$=0.9,0.7,0.5 and the . ) )
scaled result§21)—(22) for these curves. These results imply that for the nonmonotogig,, the inner

structure of the patterns does not play an important role in
the overall performance of the perceptron.
In this Brief Report we have studied the optimal capacity

Second, for the nonmonotonic input-output relatms, of a class of graded-response perceptrons storing biased and

the corresponding results are presented in Fig. 5. Severgpatially correlated patterns with nonmonotonic input-output

remarks are in order. Technically, the solutions of the reI-".EIationS using a first-step replica-symmetry-breaking analy-

evant saddle-point equations are unique for small valu& of SIS . . :
for all ygy but from S>S,=0.55 onwards there exist, as in The most important results are that a change in the opti-

the case of biased output patterns, multiple solutions in %;?Tl];:lepdagltyaguae t(?ob'ﬁ‘;tgggglri;elaéﬂ?]z'natrg?n?tglrjst gg;ilnlijlf
growing interval inygy. Taking again the solution giving y pprop 9 P g

the greatest optimal capacity we find the constant part gheigﬁﬁ;ds'rtﬁzpogrsff)rﬁ;ﬁiggﬂig&i;ﬁ“St'cs of the outputs
=2 (for small ygy andS>S.=0.55) of the curves in Fig. 5. P '

It seems that for these values 9k, the perceptron is not The authors would like to thank Dr. G. Vancraeynest for
able to benefit from the nonmonotonicity gk due to the informative discussions and the Fund for Scientific Research

comes the sign function such that always approaches 2
because of the argument above.

fact that the order paramet€ remains small. Flanders(Belgium) for financial support.
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