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Correlated patterns in nonmonotonic graded-response perceptrons

D. Bollé and T. Verbeiren
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~Received 26 July 1999; revised manuscript received 26 January 2000!

The optimal capacity of graded-response perceptrons storing biased and spatially correlated patterns with
nonmonotonic input-output relations is studied. It is shown that only the structure of the output patterns is
important for the overall performance of the perceptrons.

PACS number~s!: 87.10.1e, 02.50.2r, 64.60.Cn
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Graded-response perceptrons have been studied in
sively in the past years~@1# and references therein!. It is
found that for nonmonotonic input-output relations intere
ing retrieval properties are obtained such as an improvem
of the optimal capacity~see, e.g.,@2#!.

The studies mentioned above concern patterns that
chosen to be independent identically distributed random v
ables with respect to the sites and the patterns. Howeve
practical applications one has to consider sets of data
internal structure. While the effects of bias and correlatio
on the optimal capacity have been studied before for mo
tonic input-output relations~@3–6# and references therein!
they have not yet been reported on for nonmonotonic on
This is the purpose of this Brief Report.

The graded-response perceptron maps a collection o
put patterns$j i

m ;1< i<N%, 1<m<p5aN, with a the ca-
pacity, onto a corresponding set of outputszm via

zm5g~hm!, hm5
1

AN
(

j
Jjj j

m . ~1!

Hereg is the input-output relation of the perceptron. In E
~1! hm is the local field generated by the inputs. TheJj are
the couplings of the perceptron architecture. We focus
attention on general input patterns specified by

^j i
m&5m, ^j i

mj j
n&5dmnCi j . ~2!

The matrix C formed by the elementsCi j is taken to be
symmetric and positive. We specifically consider corre
tions with m50 and generalC and correlations withmÞ0
and Ci j 5d i j (v1m2). The latter are called biased patter
andv is the variance of the input distribution.

In order to compute the available Gardner volume@3# in J
space we consider the following condition on the local fiel

hmPI m[$x;g~x!5zm%, ~3!

where in general

I m5ø j 51
r m

I j
m5ø j 51

r m
@ l j

m ,uj
m# ~4!

form a collection of intervals, not necessarily simply co
nected, withl j

m , uj
m the lower and upper bounds of thej th

subinterval andr m the number of subintervals defined by th
patternzm. We remark that for monotonic input-output rel
tions,r m51. Following the standard Gardner analysis@3# we
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use the replica technique to calculate v
5 limN→`N21^^ ln V&& with V the fractional volume inJ
space with spherical normalization and^^ && the average over
the statistics of inputs and outputs.

The order parameters occuring in this calculation for c
related patterns withm50 are@4,5#

qll85
1

N (
j , j 8

Cj j 8Jj
lJj 8

l8 , l,l8, ~5!

Ql5
1

N (
j , j 8

Cj j 8Jj
lJj 8

l , l,l851, . . . ,n ~6!

with n the number of replicas. Since the set of general fix
point equations leading to the optimal capacityac ~obtained
when V→0) in the replica-symmetric~RS! approximation
has been discussed already in@4,5# ~for a simple perceptron
with the sign function as an input-output relation! we do not
write out explicitly the analogous formula for the grade
response perceptron with correlated input and binary ou
but nonmonotonic input-output relations. For technical re
sons the latter are taken to be odd in the field. We just m
tion that the essential difference is a splitting of the integ
tions in regions of the form@(uj 211 l j )/2,l j # and @uj ,(uj
1 l j 11)/2#, corresponding to the collection of intervals~4!
@compare Eq.~8! in @2##. No closed form forac is possible
and the solution of these fixed-point equations is rather
dious.

For biased patterns@mÞ0 andCi j 5d i j (v1m2)# the or-
der parameters read

qll85
1

N (
j

Jj
lJj

l8 , l,l8, ~7!

Ml5
1

AN
(

j
Jj

l , l,l851, . . . ,n. ~8!

Since in this case a closed form forac is possible and its
structure is interesting for analyzing the effects of the biasm,
we write it down explicitly in a first-step replica-symmetry
breaking approximation~RSB1!. Applying the Parisi scheme
@2,9# we find
6027 ©2000 The American Physical Society
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ac
RSB15min

P,q0

max
M

2 ln@11P~12q0!#2
Pq0

11P~12q0!

2K E Dz0 ln C~ I m,q0 ,P,z0!L
zm

~9!

with, dropping the indexm in the sequel,

C~ I m,q0 ,P,z0!

5(
j 51

r

LS 2B~ l j !,2
1

2
@B~uj 21!1B~ l j !#,y~ l j ! D

1LS 2
1

2
@B~uj !1B~ l j 11!#,2B~uj !,y~uj ! D

1L„2B~uj !,2B~ l j !,0…, ~10!

whereu052`, l r 1151`, and the otherl j anduj depend
explicitly on the input-output relationg @recall Eqs.~3! and
~4!#. Furthermore,

L~a,b,c!5E
a

b

Dz1 expS 2
1

2
Pc2D , ~11!

B~x!5
A~x!1z0Aq0

A12q0

, A~x!5
x2mM

Av
, ~12!

y~x!5A~x!1z0Aq01z1A12q0, ~13!

with Dz5dz(2p)21/2 exp(2z2/2) the Gaussian measur
For zero bias we find back the results given in Eq.@2#.

Two input-output relations are studied for compariso
The piecewise linear one

gL~x!5H sgn~x!, uxu>1/gL

gLx, uxu,1/gL
~14!

is a prototype of a general monotonic function, and the
versed wedge@7,8#

gRW~x!5sgn@~x11/gRW!x~x21/gRW!# ~15!

is an example of a nonmonotonic one. HeregL ,gRW are
called gain parameters. In the sequel we useg without sub-
script when the results are valid for both types of inp
output relations.

Each of the above functions is an example of a class
input-output relations that can be parametrized in the follo
ing way. Consider a certain class and take two functiong

and g̃ then (1/g)I m5(1/g̃) Ĩ m. Other examples satisfying
this relation include, e.g., thetanh function, the inverse lin-
ear function, and the sawtooth function, each with the sl
as a relevant parameter.

Biased patterns. First, we study biased input and outp
patterns chosing as their probability distribution

r~x!5
11m

2
d~12x!1

12m

2
d~11x!, ~16!
.

-

-

f
-

e

wherem can be different for input and output, thus definin
mi andmo . Without loss of generality we take the bias p
rametersm to be positive.

We start with some general properties of the perceptr
defined by Eqs.~14! and~15!. Comparing the results~9! with
those of@2,10#, we see that in order to obtain the expressio
for biased patterns it is sufficient to substitute the local fi
h by (h2miM )/Av, and to perform an extra maximizatio
overM in the expressions for patterns without bias. This te
us that the order parameterM, which indicates the bias in the
couplings, as seen in its definition~8!, shifts the local field
such that condition~3! is optimally satisfied and hence th
capacity increases. Furthermore, it naturally introduces
cases:miM50 andmiMÞ0. Whenevermi or mo are zero
miM50. However,miM50 does not necessarily imply tha
mi or mo are zero, as we will see explicitly in the case of t
nonmonotonicgRW. These points wheremiM50 occur
rather exceptionally, though.

A closer inspection of the results~9!–~13! shows that the
graded-response perceptron satisfies the following ana
scaling behavior:

ac~mi ,g;mo![ac„f ~mi ,g!;mo…, ~17!

f ~mi ,g!5~12mi
2!21/2g. ~18!

These results are valid for both monotonic and nonmo
tonic input-output relations~see Fig. 1! discussed above
Other input-output relations need a different parametrizat
in order to give the simple factorg in Eq. ~18!. The new
insight is that the output statistics is the important quan
determining the performance of the perceptron. In gene
increasing the bias in the output results in a nondecrea
optimal capacity.

Concerning the RS stability assured by a negative sign
the replicon eigenvaluelR @9# we find that for monotonic
nondecreasing input-output relations and unbiased ou
patterns the following identity holds formo50:

sgn@2lR~mi ,gL ;0!#5sgnF ]

]gL
ac~mi ,gL ;0!G . ~19!

This relation tells us that varying the input bias does n
change the breaking behavior. The latter can also be s

FIG. 1. The optimal capacityac of gRW as a function ofgRW

with mo50.2 and, from right to left,mi50.9,0.7,0.5 and the scale
result @Eqs.~17! and ~18!# for these curves.
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from relation~19! for mi50 ~as given in@10#! together with
the scaling relation~17!. For nonmonotonicg we know that
replica-symmetry is unstable@11#.

For the graded-reponse perceptrongL and pattern distri-
bution ~16! we find the following additional results concern
ing the output bias. ForM50 the solution is stable for al
values of the bias in input and output, for eachgL . For M
Þ0, from a certain value ofmo onwards the RS solution
becomes unstable for a growing interval ofgL values. This is
shown in Fig. 2. For these perceptrons it is known@2,10# that
the effect of breaking is small. Although it grows with in
creasing output bias, it is seen that formo,0.9, the differ-
ence in capacity does not exceed 1022. We remark that the
maximum capacity is reached forgL→` in agreement with
@3#.

For the nonmonotonic input-output relationgRW the maxi-
mal ac is obtained for a finite value ofgRW, as shown in
Fig. 3, implying that there exists an optimal choice for t
width of the plateaus. This choice depends on the spe
parameters of the pattern distribution.

Compared with the monotonic case the overall differen
between the RS and RSB1 solution is much bigger. The
timal capacity for the nonmonotonic perceptron is alwa
greater than that for the monotonic one. We note that
gRW→0 and gRW→` the optimal capacity ofgRW ap-
proaches that of the sign function. Technically, for eve

FIG. 2. The optimal capacityac ~full curves! and the replicon
eigenvaluelR ~dashed curves! for gL as a function ofgL with mi

50.2 and, from bottom to top,mo50,0.5,0.9.

FIG. 3. The RS~dashed curve! and RSB~full curve! optimal
capacityac of gRW as a function ofgRW with mi50.1 and, from
bottom to top,mo50,0.5,0.75,0.8.
c

e
p-
s
r

mo.0 we find that there exist multiple solutions of the re
evant fixed-point equations for small values ofgRW. This is
due to the nonmonotonicity of the input-output relation.
that case we take the solution giving the greatest opti
capacityac .

A somewhat surprising feature of this perceptron is tha
second maximum develops both in the RS and RSB1 s
tion as a function ofgRW for big values ofmo ~Fig. 3!.
Qualitatively the overall behavior of the input-output relatio
remains the same within RSB1. This is so for all values
the model parameters we have considered but may be a p
erty of the binary output distribution~compare@2# for a uni-
form output!. The difference between RS and RSB1 gro
with increasing bias.

Between the two maxima, there is a point whereac does
not depend on the outputmo. This feature is present both i
the RS and the RSB1 approximation although for a sligh
different value ofgRW in RSB1. The underlying reason fo
this is that the solution ofM at these points is zero and th
the input-output relation is odd in the local field, such th
the output statistics does not influence the optimal capa
of the system. Since changingmi can be expressed as resca
ing gRW in the sense of Eq.~17!, the capacity at these point
is the same for every value ofmi and mo . Changing the
input distribution~16! by varying the place of the delta peak
in the interval@0,1# shows a similar scaling behavior.

Correlated patterns. Next, following @4#, we study corre-
lations in the input patterns that are positive and fall off w
the distance between the sites

Ci j 5exp~2u i 2 j u/L ![Su i 2 j u, ~20!

with L a typical length size. The parameterS is the correla-
tion strength inside one input pattern and varies betwee
corresponding to independent sites and 1 meaning tha
spins in a pattern are equal. The spatial structure introdu
above induces interesting correlations between the coupl
@4#.

For the sign function it has been shown@4# that the opti-
mal capacityac remains 2, regardless of the inner structu
of the inputs. First, for the case ofgL we analyze the critical
capacity ac as a function ofgL for different correlation
strengthsS. The results are shown in Fig. 4. By increasinggL
or decreasingS, ac increases. In the limitgL→`, gL be-

FIG. 4. The optimal capacityac as a function ofgL for gL with
correlated inputs. From top to bottomS50,0.5,0.9.
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comes the sign function such thatac always approaches 2
because of the argument above.

Second, for the nonmonotonic input-output relationgRW
the corresponding results are presented in Fig. 5. Sev
remarks are in order. Technically, the solutions of the r
evant saddle-point equations are unique for small valuesS
for all gRW but from S.Sc50.55 onwards there exist, as
the case of biased output patterns, multiple solutions i
growing interval ingRW. Taking again the solution giving
the greatest optimal capacity we find the constant partac
52 ~for smallgRW andS.Sc50.55) of the curves in Fig. 5
It seems that for these values ofgRW, the perceptron is no
able to benefit from the nonmonotonicity ofgRW due to the
fact that the order parameterQ remains small.

FIG. 5. The optimal capacityac as a function ofgRW for gRW

with correlated inputs. From right to leftS50.9,0.7,0.5 and the
scaled results~21!–~22! for these curves.
B:
ral
l-

a

Looking at Fig. 5 we see that the maximal value ofac is
the same, independent of the correlation strength. This
also be shown using the structure of the fixed-point equati
~9!–~13!. We find

ac~S,gRW![ac„f ~S,gRW!…, ~21!

where the precise scaling functionf can be determined only
numerically due to the complex structure of the fixed-po
equations. However, we can show analytically that forgRW
[gc defined such thatac is maximal

f ~S,gc!5S 11S2

12S2D 1/2

gc . ~22!

These results imply that for the nonmonotonicgRW the inner
structure of the patterns does not play an important role
the overall performance of the perceptron.

In this Brief Report we have studied the optimal capac
of a class of graded-response perceptrons storing biased
spatially correlated patterns with nonmonotonic input-out
relations using a first-step replica-symmetry-breaking ana
sis.

The most important results are that a change in the o
mal capacity due to bias or correlations in the input can
removed by an appropriate scaling of the parameters defi
the graded-response perceptrons. The statistics of the ou
determines the performance of the latter.
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